

Technische Informatik I

Übungsblatt 4

Prof. Dr. Dirk Hoffmann

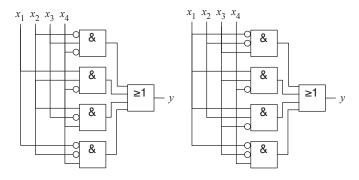
Hochschule Karlsruhe University of

Applied Sciences

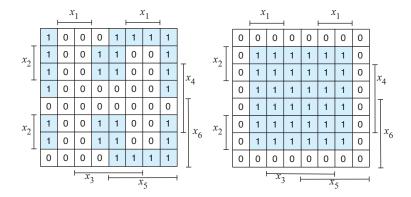
Fakultät für Informatik und Wirtschaftsinformatik

Aufgabe 1: Erzeugen Sie auf algebraische Weise

- a) die DNF von $(y \leftrightarrow z) \lor x$
- b) die KNF von $(y \lor z)(\overline{x} \lor z)(\overline{x} \lor \overline{y})$


Aufgabe 2: Erzeugen Sie für die beiden unten abgebildeten Funktionen y_1 und y_2 ein KV-Diagramm und berechnen Sie eine disjunktive Minimalform.

	x_3	x_2	x_1	<i>y</i> ₁		x_4	<i>x</i> ₃	x_2	x_1	<i>y</i> ₂
0	0	0	0	1	0	0	0	0	0	1
1	0	0	1	1	1	0	0	0	1	1
2	0	1	0	1	2	0	0	1	0	1
3	0	1	1	1	3	0	0	1	1	1
4	1	0	0	1	4	0	1	0	0	0
5	1	0	1	0	5	0	1	0	1	0
6	1	1	0	0	6	0	1	1	0	0
7	1	1	1	1	7	0	1	1	1	0
					8	1	0	0	0	1
					9	1	0	0	1	1
					10	1	0	1	0	0
					11	1	0	1	1	0
					12	1	1	0	0	0
					13	1	1	0	1	0
					14	1	1	1	0	0
					15	1	1	1	1	0


Aufgabe 3: Geben Sie alle vierstelligen Funktionen an, für die die disjunktive Minimalform gleich der disjunktiven Normalform und gleichzeitig die konjunktive Minimalform gleich der konjunktiven Normalform ist.

Tipp: Überlegen Sie sich hierzu zunächst, wie das KV-Diagramm dieser Funktionen aussehen müsste.

Aufgabe 4: Sind die folgenden beiden Schaltnetze äquivalent? Stellen Sie zur Beantwortung der Frage für beide Schaltungen ein KV-Diagramm auf und tragen Sie die Funktionswerte sowie die durch die UND-Glieder repräsentierten Blöcke ein. Was stellen Sie fest?

Aufgabe 5: Minimieren Sie die booleschen Funktionen, die durch die folgenden KV-Diagramme gegeben sind:

Beachten Sie, dass in KV-Diagrammen mit fünf oder mehr Variablen benachbarte Variablenbelegungen nicht mehr in jedem Fall nebeneinander angeordnet sind und Blöcke dadurch aus verschiedenen Fragmenten zusammengesetzt sein können.