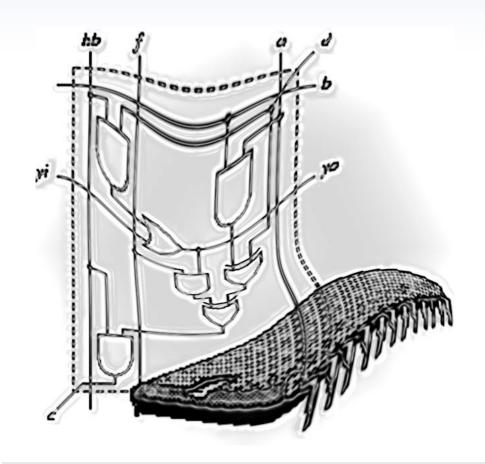
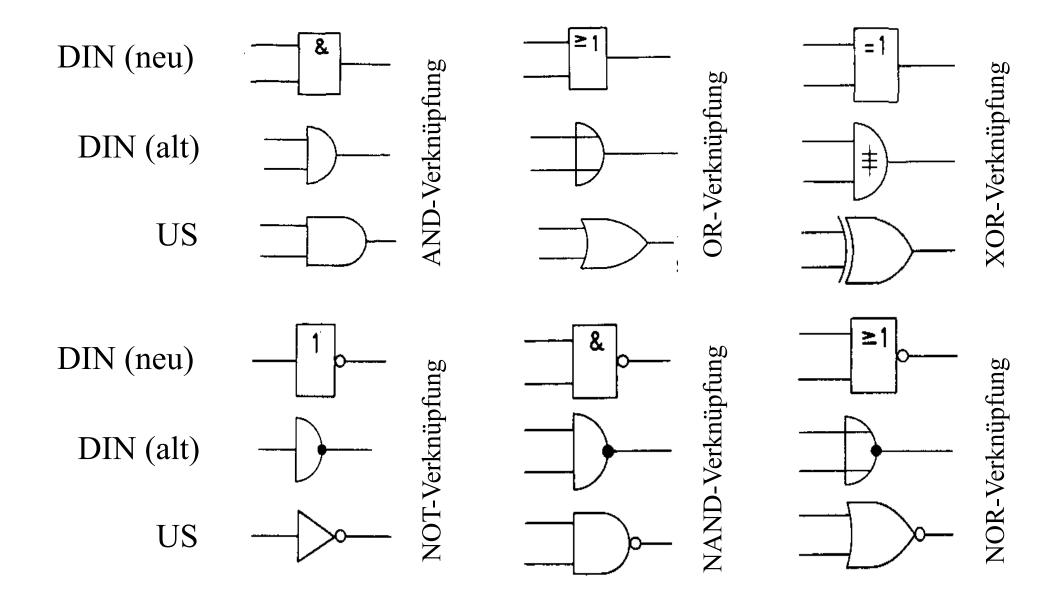
Technische Informatik I



Ann Matik

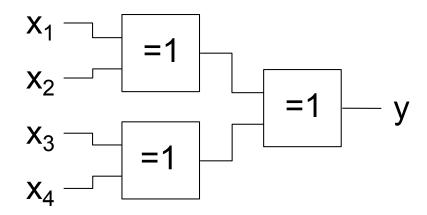
Prof. Dr. Dirk W. Hoffmann

Logikgatter



Beispiel

Beispiel: Paritätsfunktion



Eigenschaften

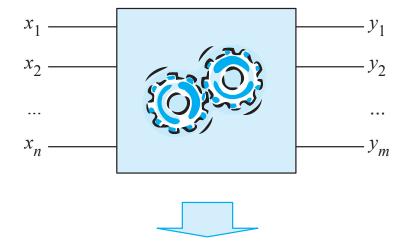
■ Eingänge: x₁, x₂, x₃, x₄

Ausgänge: y

• Gatter: 3 × XOR

Stufen: 2

Allgemeines Schema



$$y_1 = f_1(x_1, x_2, \dots, x_n)$$

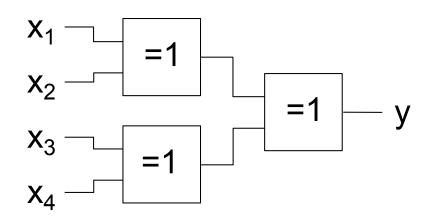
$$y_2 = f_2(x_1, x_2, \dots, x_n)$$

. . .

$$y_m = f_m(x_1, x_2, \dots, x_n)$$

Beispiel

Beispiel: Paritätsfunktion



Eigenschaften

■ Eingänge: x₁, x₂, x₃, x₄

Ausgänge: y

• Gatter: 3 × XOR

Stufen: 2

Wahrheitstabelle

	\mathbf{x}_4	x ₃	x ₂	\mathbf{x}_1	У
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

Normalformen (Beispiel)

Beispiel: Paritätsfunktion

-	x ₃	x ₂	\mathbf{x}_1	У
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

Normalformen (Allgemeine Form)

Gegeben: Boolesche Funktion $f(x_n, ..., x_3, x_2, x_1)$

Kanonische disjunktive Normalform

Allgemeine Form

$$\bigvee_{e \in E} Minterm_e$$

- E = Einsmenge von f
- Jeder Minterm hat die Form

$$(L_{\mathbf{n}} \wedge \ldots \wedge L_{\mathbf{1}}) \ L_{\mathbf{i}} \in \{ \mathbf{x}_{\mathbf{i}}, \, \neg \mathbf{x}_{\mathbf{i}} \}$$

- Jedes L_i heißt ein Literal von f
- Abkürzungen
 - DNF (Disjunktive Normalform)
 - SOP (Sum of products)

Kanonische konjunktive Normalform

Allgemeine Form

$$\bigwedge_{n \in \mathbb{N}} \mathsf{Maxterm}_n$$

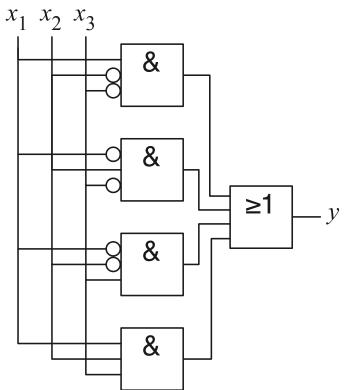
- N = Nullmenge von f
- Jeder Maxterm hat die Form

$$(L_{n} \vee ... \vee L_{1}) \ L_{i} \in \{x_{i}, \neg x_{i}\}$$

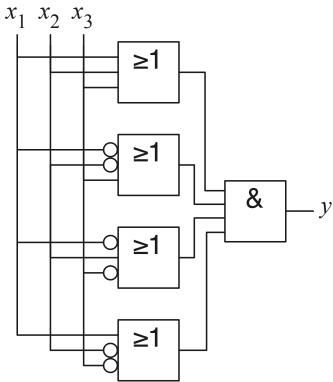
- Jedes L_i heißt ein Literal von f
- Abkürzungen
 - KNF (Konjunktive Normalform)
 - POS (Product of sums)

Übergang zur Hardware

Jede Gleichung lässt sich 1:1 in Hardware umsetzen



$$y = (x_1 \land \neg x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$$



$$y = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$$