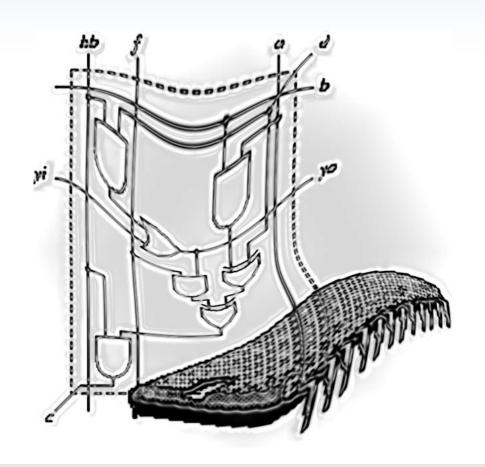
# Technische Informatik I



Kapitel 2

Boolesche Algebra

Prof. Dr. Dirk W. Hoffmann

Hochschule Karlsruhe • University of Applied Sciences • Fakultät für Informatik

### Schaltalgebra

■ ¬, ∧ und ∨ sind Operatoren über der Menge {0,1}

| а | b | a ^ b |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 0     |
| 1 | 0 | 0     |
| 1 | 1 | 1     |

| a | b | a v b |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 1     |
|   |   |       |

| а | ¬а |
|---|----|
| 0 | 1  |
| 1 | 0  |

Negation

Konjunktion

Disjunktion

- Die Operatoren erfüllen mehrere wichtige Gesetze
  - Kommutativgesetze

$$\bullet$$
a  $\wedge$  b = b  $\wedge$  a

$$a \lor b = b \lor a$$

Distributivgesetze

•a 
$$\wedge$$
 (b  $\vee$  c) = (a  $\wedge$  b)  $\vee$  (a  $\wedge$  c) a  $\vee$  (b  $\wedge$  c) = (a  $\vee$  b)  $\wedge$  (a  $\vee$  c)

Existenz von neutralen Elementen

$$a \lor 0 = a$$

Existenz von inversen Elementen

$$a ∧ ¬a = 0$$

$$a \vee \neg a = 1$$



#### Boolesche Algebra

Gegeben: Menge V, Operatoren •, +: V × V → V

V heißt boolesche Algebra, wenn die folgenden vier Huntington'schen Axiome gelten:

Kommutativgesetze (K):
a • b = b • a

$$a + b = b + a$$

• Distributivgesetze (D):  $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ 

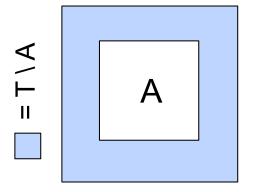
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

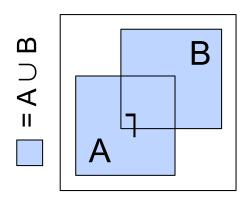
• Neutrale Elemente (N): Es existieren e,  $n \in V$  mit

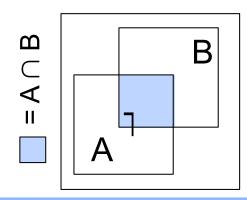
• Inverse Elemente (I):
Für alle a ∈ V existiert ein a' mit

Mengenalgebra über einer Trägermenge T

| Boolesche Algebra | Mengenalgebra |                               |
|-------------------|---------------|-------------------------------|
| V                 | <i>℘</i> (T)  | Potenzmenge der Trägermenge T |
| •                 | $\cap$        | Durchschnitt                  |
| +                 | U             | Vereinigung                   |
| n                 | Ø             | Leere Menge                   |
| е                 | Т             | Trägermenge                   |
| a'                | T\A           | Komplementärmenge             |

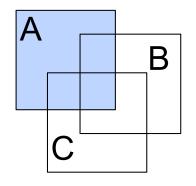


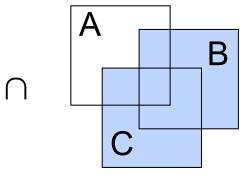


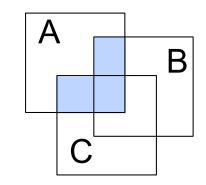




#### ■ A ∩ (B ∪ C)

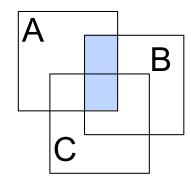


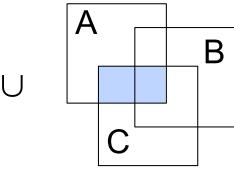


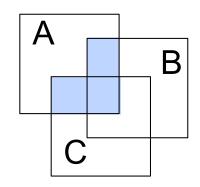


**■** (A ∩ B) ∪ (A ∩ C)

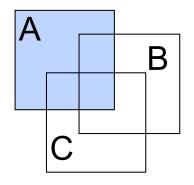


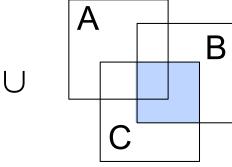


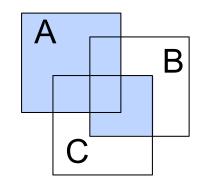




#### **■** A ∪ (B ∩ C)

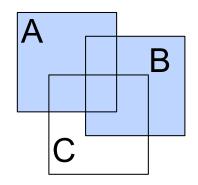


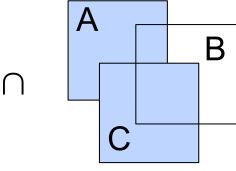


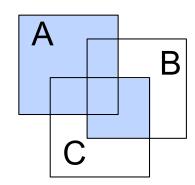


**■** (A ∪ B) ∩ (A ∪ C)









Nochmals zurück zur Schaltalgebra ...

| Boolesche Algebra | Schaltalgebra |                              |
|-------------------|---------------|------------------------------|
| V                 | { 1, 0 }      | Wahrheitswerte (TRUE, FALSE) |
| •                 | ۸             | Konjunktion (UND-Operator)   |
| +                 | V             | Disjunktion (ODER-Operator)  |
| n                 | 0             | Falsch (FALSE)               |
| е                 | 1             | Wahr (TRUE)                  |
| a'                | ¬а            | Negation (Verneinung)        |



### Notation und Operatorenbindung

Abgeleitete Operatoren (syntactic sugar)

```
(a → b) für (¬a ∨ b) (Implikation)
(a ← b) für (b → a) (Inv. Implikation)
(a ↔ b) für (a → b) ∧ (a ← b) (Äquivalenz)
(a ⊕ b) für ¬(a ↔ b) (Antivalenz)
```

Bezeichnungen



#### Schaltalgebra

#### Boolesche Funktionen

□ ¬ ist eine einstellige boolesche Funktion

$$\neg : \{0,1\} \rightarrow \{0,1\}$$

Alle anderen Operatoren sind zweistellige boolesche Funktionen

$$\wedge, \vee, \dots : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$$

• Wie viele zweistellige boolesche Funktionen gibt es insgesamt?

# Die zweistelligen booleschen Funktionen

|   |   | $f_0 = 0$      | $f_1 = a \wedge b$ | $f_2 = \neg a \wedge b$ | $f_3 = b$ | $f_4 = \neg b \wedge a$ | f <sub>5</sub> = a | $f_6 = a \oplus b$ | $f_7 = a \lor b$ | $f_8 = \neg(a \lor b)$ | $f_9 = a \leftrightarrow b$ | f <sub>10</sub> = ¬a | $f_{11} = a \rightarrow b$ | $f_{12} = \neg b$ | $f_{13} = a \leftarrow b$ | $f_{14} = \neg(a \land b)$ | f <sub>15</sub> = 1 |
|---|---|----------------|--------------------|-------------------------|-----------|-------------------------|--------------------|--------------------|------------------|------------------------|-----------------------------|----------------------|----------------------------|-------------------|---------------------------|----------------------------|---------------------|
| b | а | f <sub>0</sub> | f <sub>1</sub>     | f <sub>2</sub>          | $f_3$     | f <sub>4</sub>          | f <sub>5</sub>     | f <sub>6</sub>     | f <sub>7</sub>   | f <sub>8</sub>         | f <sub>9</sub>              | f <sub>10</sub>      | f <sub>11</sub>            | f <sub>12</sub>   | f <sub>13</sub>           | f <sub>14</sub>            | f <sub>15</sub>     |
| 0 | 0 | 0              | 0                  | 0                       | 0         | 0                       | 0                  | 0                  | 0                | 1                      | 1                           | 1                    | 1                          | 1                 | 1                         | 1                          | 1                   |
| 0 | 1 | 0              | 0                  | 0                       | 0         | 1                       | 1                  | 1                  | 1                | 0                      | 0                           | 0                    | 0                          | 1                 | 1                         | 1                          | 1                   |
| 1 | 0 | 0              | 0                  | 1                       | 1         | 0                       | 0                  | 1                  | 1                | 0                      | 0                           | 1                    | 1                          | 0                 | 0                         | 1                          | 1                   |
| 1 | 1 | 0              | 1                  | 0                       | 1         | 0                       | 1                  | 0                  | 1                | 0                      | 1                           | 0                    | 1                          | 0                 | 1                         | 0                          | 1                   |
|   |   | Nullfunktion   | Konjunktion        |                         |           |                         |                    | Antivalenz         | Disjunktion      | NOR                    | Äquivalenz                  |                      | Implikation                |                   | Inverse Implikation       | NAND                       | Einsfunktion        |

### Notation und Operatorenbindung

- Alternative Notation der booleschen Operatoren
  - (a b) bzw. (ab) anstelle (a ∧ b)
  - (a + b) anstelle (a v b)
  - a anstelle ¬a
- Bindung der Operatoren
  - A bindet stärker als v
  - ¬ bindet stärker als ∧
- Klammerung
  - Gleiche binäre Operatoren werden linksassoziativ zusammengefasst, z.B.

$$a \wedge b \wedge c = (a \wedge b) \wedge c$$

| Kommutativgesetze  | $a \wedge b = b \wedge a$<br>$a \vee b = b \vee a$                                                             | (K) |
|--------------------|----------------------------------------------------------------------------------------------------------------|-----|
| Distributivgesetze | $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$<br>$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$ | (D) |
| Neutrale Elemente  | a \ 1 = a<br>a \ 0 = a                                                                                         | (N) |
| Inverse Elemente   | a ∧ ¬a = 0<br>a ∨ ¬a = 1                                                                                       | (I) |

In jeder Booleschen Algebra, so auch in der Schaltalgebra, gelten die vier oben gezeigten Huntington'schen Axiome

Aus den Huntington'schen Axiomen lassen sich weitere praktische Rechenregeln ableiten...

| Kommutativgesetze         | $a \wedge b = b \wedge a$<br>$a \vee b = b \vee a$                                                                                 | (K)        |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|
| Distributivgesetze        | a \( (b \cdot c) = (a \cdot b) \cdot (a \cdot c) \\ a \cdot (b \cdot c) = (a \cdot b) \cdot (a \cdot c)                            | (D)        |
| Neutrale Elemente         | a × 1 = a<br>a × 0 = a                                                                                                             | (N)        |
| Inverse Elemente          | a ∧ ¬a = 0<br>a ∨ ¬a = 1                                                                                                           | (I)        |
| Assoziativgesetze         | $a \wedge (b \wedge c) = (a \wedge b) \wedge c = a \wedge b \wedge c$<br>$a \vee (b \vee c) = (a \vee b) \vee c = a \vee b \vee c$ | (A)        |
| Idempotenzgesetze         | a ^ a = a<br>a v a = a                                                                                                             | (ID)       |
| Absorptionsgesetze        | a v (a ^ b) = a<br>a ^ (a v b) = a                                                                                                 | (AB)       |
| Gesetze von DeMorgan      | $\neg(a \lor b) = \neg a \land \neg b$<br>$\neg(a \land b) = \neg a \lor \neg b$                                                   | (M)        |
| Auslöschungsgesetze       | $a \wedge 0 = 0$<br>$a \vee 1 = 1$                                                                                                 | (L)        |
| Gesetz der Doppelnegation | ¬¬a = a                                                                                                                            | (DN)<br>13 |

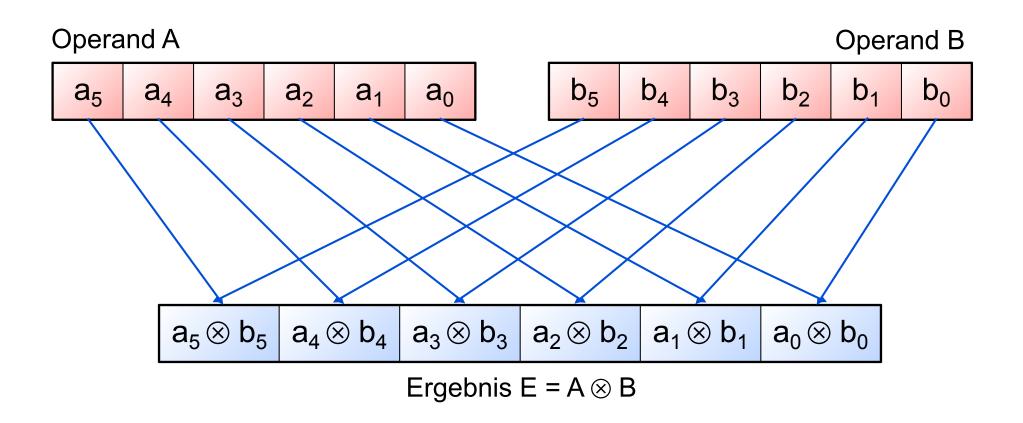
#### Anwendung der Regeln

- Vereinfachung von Ausdrücken
  - Beispiel 1: Y = (A ∨ B) ∧ (¬A ∨ B) ∧ (A ∨ ¬B)
  - Beispiel 2:  $Y = (A \rightarrow B) \rightarrow ((\neg A \rightarrow B) \rightarrow B)$



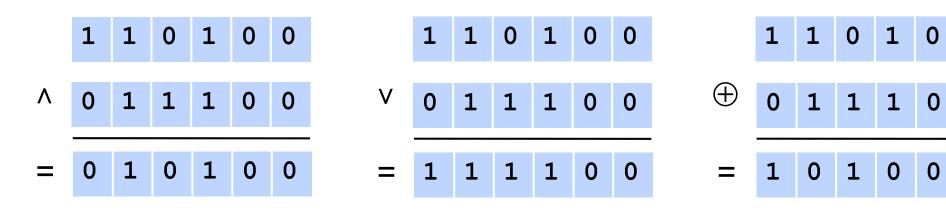
#### Bitweise logische Operationen

A,B seien Bitvektoren, ⊗ eine beliebige Verknüpfung



#### Bitweise logische Operationen

UND, ODER und XOR wirken wie spezielle Bit-Masken



UND wird verwendet, um Bits gezielt auf 0 zu setzen. Dazu hat die Maske an allen Bitpositionen, die übernommen werden sollen, eine 1 und an den Stellen, die auf 0 gesetzt werden sollen, eine 0.

ODER wird verwendet, um Bits gezielt auf 1 zu setzen. Dazu hat die Maske an allen Bitpositionen, die übernommen werden sollen, eine 0 und an den Stellen, die auf 1 gesetzt werden sollen, eine 1.

XOR wird verwendet, um Bits gezielt zu kippen. Dazu hat die Maske an allen Bitpositionen, die übernommen werden sollen, eine 0 und an den Stellen, die gekippt werden sollen, eine 1.